Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 294(5): L942-54, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18310228

RESUMO

Analysis of membrane currents recorded from hormone-deprived H441 cells showed that the membrane potential (V(m)) in single cells (approximately -80 mV) was unaffected by lowering [Na+]o or [Cl(-)]o, indicating that cellular Na+ and Cl(-) conductances (GNa and GCl, respectively) are negligible. Although insulin (20 nM, approximately 24 h) and dexamethasone (0.2 microM, approximately 24 h) both depolarized Vm by approximately 20 mV, the response to insulin reflected a rise in GCl mediated via phosphatidylinositol 3-kinase (PI3K) whereas dexamethasone acted by inducing a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent rise in GNa. Although insulin stimulation/PI3K-P110 alpha expression did not directly increase GNa, these maneuvers augmented the dexamethasone-induced conductance. The glucocorticoid/SGK1-induced GNa in single cells discriminated poorly between Na+ and K+ (PNa/PK approximately 0.6), was insensitive to amiloride (1 mM), but was partially blocked by LaCl3 (La3+; 1 mM, approximately 80%), pimozide (0.1 mM, approximately 40%), and dichlorobenzamil (15 microM, approximately 15%). Cells growing as small groups, on the other hand, expressed an amiloride-sensitive (10 microM), selective GNa that displayed the same pattern of hormonal regulation as the nonselective conductance in single cells. These data therefore 1) confirm that H441 cells can express selective or nonselective GNa (14, 48), 2) show that these conductances are both induced by glucocorticoids/SGK1 and subject to PI3K-dependent regulation, and 3) establish that cell-cell contact is vitally important to the development of Na+ selectivity and amiloride sensitivity.


Assuntos
Comunicação Celular/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , Canais de Sódio/fisiologia , Sódio/metabolismo , Amilorida/farmacologia , Linhagem Celular , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Elafina/genética , Elafina/metabolismo , Canais Epiteliais de Sódio/fisiologia , Humanos , Hipoglicemiantes/farmacologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Insulina/farmacologia , Lantânio/farmacocinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutagênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Transfecção
3.
Am J Physiol Lung Cell Mol Physiol ; 292(5): L1304-12, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17277046

RESUMO

By analysis of whole cell membrane currents in Na(+)-absorbing H441 human airway epithelial cells, we have identified a K(+) conductance (G(K)) resistant to Ba(2+) but sensitive to bupivacaine or extracellular acidification. In polarized H441 monolayers, we have demonstrated that bupivacaine, lidocaine, and quinidine inhibit basolateral membrane K(+) current (I(Bl)) whereas Ba(2+) has only a weak inhibitory effect. I(Bl) was also inhibited by basolateral acidification, and, although subsequent addition of bupivacaine caused a further fall in I(Bl), acidification had no effect after bupivacaine, demonstrating that cells grown under these conditions express at least two different bupivacaine-sensitive K(+) channels, only one of which is acid sensitive. Basolateral acidification also inhibited short-circuit current (I(SC)), and basolateral bupivacaine, lidocaine, quinidine, and Ba(2+) inhibited I(SC) at concentrations similar to those needed to inhibit I(Bl), suggesting that the K(+) channels underlying I(Bl) are part of the absorptive mechanism. Analyses using RT-PCR showed that mRNA encoding several two-pore domain K(+) (K2P) channels was detected in cells grown under standard conditions (TWIK-1, TREK-1, TASK-2, TWIK-2, KCNK-7, TASK-3, TREK-2, THIK-1, and TALK-2). We therefore suggest that K2P channels underlie G(K) in unstimulated cells and so maintain the driving force for Na(+) absorption. Since this ion transport process is vital to lung function, K2P channels thus play an important but previously undocumented role in pulmonary physiology.


Assuntos
Bário/farmacologia , Canais de Potássio/fisiologia , Mucosa Respiratória/fisiologia , Sódio/metabolismo , Bupivacaína/farmacologia , Linhagem Celular , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Reação em Cadeia da Polimerase , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , RNA/genética , RNA/isolamento & purificação , Mucosa Respiratória/efeitos dos fármacos
4.
Am J Respir Crit Care Med ; 171(12): 1395-402, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15778486

RESUMO

We determined the effects of sustained and cyclical prenatal mechanical strain on the hypoplastic lung of the ovine model of congenital diaphragmatic hernia. Over a period of 4 weeks in late gestation, repeated cyclical tracheal occlusion for 23 hours with 1-hour release stimulated minimal growth, but promoted maturation with the development of a saccular lung. In contrast, a cycle consisting of 47 hours with 1-hour release induced optimal lung growth and morphologic maturation of the hypoplastic lung parenchyma. Sustained occlusion resulted in exaggerated lung growth, exceeding that of unaffected controls, and abnormal alveolar development. The extent of induction of lung growth by mechanical strain was inversely proportional to the number of alveolar type II cells remaining in the lung epithelium. These studies show that, although mechanical strain is capable of inducing lung growth and differentiation, cyclical strain is a prerequisite for normal development and that mechanically induced growth occurs at the expense of the alveolar type II cell. We conclude that cyclical strain may allow optimal alveolar development while maintaining a population of alveolar type II cells and may thus facilitate an improvement in postnatal lung function in infants with congenital diaphragmatic hernia.


Assuntos
Hérnia Diafragmática/embriologia , Hérnia Diafragmática/patologia , Pulmão/embriologia , Prenhez , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/fisiologia , Maturidade dos Órgãos Fetais , Fetoscopia , Feto , Hérnias Diafragmáticas Congênitas , Imuno-Histoquímica , Pulmão/patologia , Tamanho do Órgão , Gravidez , Probabilidade , Troca Gasosa Pulmonar , Sensibilidade e Especificidade , Ovinos , Estresse Mecânico
5.
Annu Rev Physiol ; 66: 77-101, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14977397

RESUMO

The developing distal lung epithelium displays an evolving liquid transport phenotype, reflecting a changing and dynamic balance between Cl- ion secretion and Na+ ion absorption, which in turn reflects changing functional requirements. Thus in the fetus, Cl--driven liquid secretion predominates throughout gestation and generates a distending pressure to stretch the lung and stimulate growth. Increasing Na+ absorptive capacity develops toward term, anticipating the switch to an absorptive phenotype at birth and beyond. There is some empirical evidence of ligand-gated regulation of Cl- transport and of regulation via changes in the driving force for Cl- secretion. Epinephrine, O2, glucocorticoid, and thyroid hormones interact to stimulate Na+ absorption by increasing Na+ pump activity and apical Na+ conductance (GNa+) to bring about the switch from net secretion to net absorption as lung liquid is cleared from the lung at birth. Postnatally, the lung lumen contains a small Cl--based liquid secretion that generates a surface liquid layer, but the lung retains a large absorptive capacity to prevent alveolar flooding and clear edema fluid. This review explores the mechanisms underlying the functional development of the lung epithelium and draws upon evidence from classic integrative physiological studies combined with molecular physiology approaches.


Assuntos
Animais Recém-Nascidos/metabolismo , Líquidos Corporais/metabolismo , Recém-Nascido/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Animais , Transporte Biológico , Desenvolvimento Embrionário e Fetal , Feto/metabolismo , Humanos
6.
Biochem Biophys Res Commun ; 305(3): 671-6, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12763046

RESUMO

In fetal pneumocytes, increasing P(O(2)) can raise apical Na(+) conductance (G(Na(+))) and increase the abundance of epithelial Na(+) channel subunit (alpha-, beta-, and gamma-ENaC) mRNA, suggesting that the rise in G(Na(+)), which may be important to the perinatal maturation of the lung, reflects O(2)-evoked ENaC gene expression. However, we now show that physiologically relevant increases in P(O(2)) do not affect alpha-, beta-, and gamma-ENaC mRNA abundance in pneumocytes maintained (approximately 48 h) in hormone-free medium or in medium supplemented with dexamethasone and tri-iodothyronine, although the response does persist in cells maintained in medium containing a complex mixture of hormones/growth factors. However, parallel electrometric studies revealed clear increases in G(Na(+)) under all tested conditions and so it is now clear that O(2)-evoked increases in G(Na(+)) can occur without corresponding increases in ENaC mRNA abundance. It is therefore unlikely that this rise in G(Na(+)) is secondary to O(2)-evoked ENaC gene expression.


Assuntos
Oxigênio/farmacologia , Alvéolos Pulmonares/embriologia , Canais de Sódio/biossíntese , Canais de Sódio/fisiologia , Animais , Células Cultivadas , Meios de Cultura Livres de Soro , Dexametasona/farmacologia , Condutividade Elétrica , Canais Epiteliais de Sódio , Feto/citologia , Regulação da Expressão Gênica , Pressão Parcial , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/fisiologia , RNA Mensageiro/biossíntese , Canais de Sódio/genética , Tri-Iodotironina/farmacologia
7.
J Appl Physiol (1985) ; 93(4): 1542-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12235057

RESUMO

At birth, the distal lung epithelium undergoes a profound phenotypic switch from secretion to absorption in the course of adaptation to air breathing. In this review, we describe the developmental regulation of key membrane transport proteins and the way in which epinephrine, oxygen, glucocorticoids, and thyroid hormones interact to bring about this crucial change in function. Evidence from molecular, transgenic, cell culture, and whole lung studies is presented, and the clinical consequences of the failure of the physiological mechanisms that underlie perinatal lung liquid absorption are discussed.


Assuntos
Animais Recém-Nascidos/metabolismo , Líquidos Corporais/metabolismo , Feto/metabolismo , Recém-Nascido/metabolismo , Pulmão/metabolismo , Absorção , Animais , Transporte Biológico , Desenvolvimento Embrionário e Fetal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...